home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Skunkware 5
/
Skunkware 5.iso
/
src
/
X11
/
xearth-0.92
/
sunpos.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-06-25
|
7KB
|
251 lines
/*
* sunpos.c
* kirk johnson
* july 1993
*
* code for calculating the position on the earth's surface for which
* the sun is directly overhead (adapted from _practical astronomy
* with your calculator, third edition_, peter duffett-smith,
* cambridge university press, 1988.)
*
* RCS $Id: sunpos.c,v 1.2 1994/05/20 01:37:40 tuna Exp $
*
* Copyright (C) 1989, 1990, 1993, 1994 Kirk Lauritz Johnson
*
* Parts of the source code (as marked) are:
* Copyright (C) 1989, 1990, 1991 by Jim Frost
* Copyright (C) 1992 by Jamie Zawinski <jwz@lucid.com>
*
* Permission to use, copy, modify, distribute, and sell this
* software and its documentation for any purpose is hereby granted
* without fee, provided that the above copyright notice appear in
* all copies and that both that copyright notice and this
* permission notice appear in supporting documentation. The author
* makes no representations about the suitability of this software
* for any purpose. It is provided "as is" without express or
* implied warranty.
*
* THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "xearth.h"
#include "kljcpyrt.h"
#define TWOPI (2*M_PI)
/*
* the epoch upon which these astronomical calculations are based is
* 1990 january 0.0, 631065600 seconds since the beginning of the
* "unix epoch" (00:00:00 GMT, Jan. 1, 1970)
*
* given a number of seconds since the start of the unix epoch,
* DaysSinceEpoch() computes the number of days since the start of the
* astronomical epoch (1990 january 0.0)
*/
#define EpochStart (631065600)
#define DaysSinceEpoch(secs) (((secs)-EpochStart)*(1.0/(24*3600)))
/*
* assuming the apparent orbit of the sun about the earth is circular,
* the rate at which the orbit progresses is given by RadsPerDay --
* TWOPI radians per orbit divided by 365.242191 days per year:
*/
#define RadsPerDay (TWOPI/365.242191)
/*
* details of sun's apparent orbit at epoch 1990.0 (after
* duffett-smith, table 6, section 46)
*
* Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees
* OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees
* Eccentricity (eccentricity of orbit) 0.016713
*/
#define Epsilon_g (279.403303*(TWOPI/360))
#define OmegaBar_g (282.768422*(TWOPI/360))
#define Eccentricity (0.016713)
/*
* MeanObliquity gives the mean obliquity of the earth's axis at epoch
* 1990.0 (computed as 23.440592 degrees according to the method given
* in duffett-smith, section 27)
*/
#define MeanObliquity (23.440592*(TWOPI/360))
/*
* solve Kepler's equation via Newton's method
* (after duffett-smith, section 47)
*/
static double solve_keplers_equation(M)
double M;
{
double E;
double delta;
E = M;
while (1)
{
delta = E - Eccentricity*sin(E) - M;
if (fabs(delta) <= 1e-10) break;
E -= delta / (1 - Eccentricity*cos(E));
}
return E;
}
/*
* compute ecliptic longitude of sun (in radians)
* (after duffett-smith, section 47)
*/
static double sun_ecliptic_longitude(ssue)
time_t ssue; /* seconds since unix epoch */
{
double D, N;
double M_sun, E;
double v;
D = DaysSinceEpoch(ssue);
N = RadsPerDay * D;
N = fmod(N, TWOPI);
if (N < 0) N += TWOPI;
M_sun = N + Epsilon_g - OmegaBar_g;
if (M_sun < 0) M_sun += TWOPI;
E = solve_keplers_equation(M_sun);
v = 2 * atan(sqrt((1+Eccentricity)/(1-Eccentricity)) * tan(E/2));
return (v + OmegaBar_g);
}
/*
* convert from ecliptic to equatorial coordinates
* (after duffett-smith, section 27)
*/
static void ecliptic_to_equatorial(lambda, beta, alpha, delta)
double lambda; /* ecliptic longitude */
double beta; /* ecliptic latitude */
double *alpha; /* (return) right ascension */
double *delta; /* (return) declination */
{
double sin_e, cos_e;
sin_e = sin(MeanObliquity);
cos_e = cos(MeanObliquity);
*alpha = atan2(sin(lambda)*cos_e - tan(beta)*sin_e, cos(lambda));
*delta = asin(sin(beta)*cos_e + cos(beta)*sin_e*sin(lambda));
}
/*
* computing julian dates (assuming gregorian calendar, thus this is
* only valid for dates of 1582 oct 15 or later)
* (after duffett-smith, section 4)
*/
static double julian_date(y, m, d)
int y; /* year (e.g. 19xx) */
int m; /* month (jan=1, feb=2, ...) */
int d; /* day of month */
{
int A, B, C, D;
double JD;
/* lazy test to ensure gregorian calendar */
assert(y >= 1583);
if ((m == 1) || (m == 2))
{
y -= 1;
m += 12;
}
A = y / 100;
B = 2 - A + (A / 4);
C = 365.25 * y;
D = 30.6001 * (m + 1);
JD = B + C + D + d + 1720994.5;
return JD;
}
/*
* compute greenwich mean sidereal time (GST) corresponding to a given
* number of seconds since the unix epoch
* (after duffett-smith, section 12)
*/
static double GST(ssue)
time_t ssue; /* seconds since unix epoch */
{
double JD;
double T, T0;
double UT;
struct tm *tm;
tm = gmtime(&ssue);
JD = julian_date(tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
T = (JD - 2451545) / 36525;
T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558;
T0 = fmod(T0, 24.0);
if (T0 < 0) T0 += 24;
UT = tm->tm_hour + (tm->tm_min + tm->tm_sec / 60.0) / 60.0;
T0 += UT * 1.002737909;
T0 = fmod(T0, 24.0);
if (T0 < 0) T0 += 24;
return T0;
}
/*
* given a particular time (expressed in seconds since the unix
* epoch), compute position on the earth (lat, lon) such that sun is
* directly overhead.
*/
void sun_position(ssue, lat, lon)
time_t ssue; /* seconds since unix epoch */
double *lat; /* (return) latitude */
double *lon; /* (return) longitude */
{
double lambda;
double alpha, delta;
double tmp;
lambda = sun_ecliptic_longitude(ssue);
ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta);
tmp = alpha - (TWOPI/24)*GST(ssue);
if (tmp < -M_PI)
{
do tmp += TWOPI;
while (tmp < -M_PI);
}
else if (tmp > M_PI)
{
do tmp -= TWOPI;
while (tmp < -M_PI);
}
*lon = tmp * (360/TWOPI);
*lat = delta * (360/TWOPI);
}